How it works?
Senza categoria

The protective effect of 1400W against ischaemia and reperfusion injury is countered by transient medullary kidney endothelial dysregulation


et al. Consuelo Pasten


The Journal of Physiology


DESCRIPTION

Renal ischaemia and reperfusion (I/R) is caused by a sudden temporary impairment of the blood flow. I/R is a prevalent cause of acute kidney injury. As nitric oxide generated by inducible nitric oxide synthase (iNOS) has detrimental effects during I/R, the pharmacological blockade of iNOS has been proposed as a potential strategy to prevent I/R injury.

The aim of this study was to improve the understanding of 1400W (an iNOS inhibitor) on renal I/R as a pharmacological strategy against kidney disease. BALB/c mice received 30 min of bilateral ischaemia, followed by 48 h or 28 days of reperfusion. Vehicle or 1400W (10 mg/kg) was administered 30 min before inducing ischaemia.

We found that after 48 h of reperfusion 1400W decreased the serum creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin and proliferating cell nuclear antigen 3 in the I/R animals. Unexpectedly, we observed mRNA upregulation of genes involved in kidney injury, cell-cycle arrest, inflammation, mesenchymal transition and endothelial activation in the renal medulla of sham animals treated with 1400W.

We also explored if 1400W promoted chronic kidney dysfunction 28 days after I/R and did not find significant alterations in renal function, fibrosis, blood pressure or mortality.

The results provide evidence that 1400W may have adverse effects in the renal medulla. Importantly, our data point to 1400W-induced endothelial dysfunction, establishing therapeutic limitations for its use.


Back



Diapath Lab Talks | Privacy Policy