How it works?
Senza categoria

Modulation of inflammatory M1-macrophages phenotype by valvular interstitial cells



Background: Aortic valve stenosis involves inflammation, excess deposition of a collagen-rich extracellular matrix, and calcification. Recent studies have shown that M1 or inflammatory macrophages derived from infiltrating monocytes promote calcification of valvular interstitial cells, the most prevalent cell type of the aortic valve. We hypothesized that valvular interstitial cells could modulate inflammatory macrophages phenotype.

Methods: We first assessed macrophage phenotype in human aortic valve stenosis and control aortic valves from donors. Then, we examined profibrotic and inflammatory-related gene expression in valves and valvular interstitial cells. Finally, we investigated whether valvular interstitial cells can modify the phenotype of inflammatory macrophages.

Results: Circulating monocytes and plasma transforming growth factor beta-1 levels of patients with aortic valve stenosis were significantly higher compared with patients without aortic valve stenosis. Histologic analysis of thickened spongiosa of the aortic valve from patients with aortic valve stenosis showed a high macrophage infiltration but a low matrix metalloproteinase-9 expression compared with control aortic valves. On the other hand, valvular interstitial cell culture of aortic valve stenosis exhibited a profibrotic phenotype with a high expression of transforming growth factor beta-1 and transforming growth factor beta-1/transforming growth factor beta-3 ratio but a decreased expression of the peroxisome proliferator-activated receptor gamma nuclear receptor. Valvular interstitial cell–conditioned media of aortic valve stenosis led to a decrease in enzymatic activity of matrix metalloproteinase-9 and an increase in production of collagen in inflammatory macrophages compared with valvular interstitial cell–conditioned media from control aortic valve donors.

Conclusions: These findings indicate that profibrotic valvular interstitial cells promote the imbalance of extracellular matrix remodeling by reducing matrix metalloproteinase-9 production on inflammatory macrophages that lead to excessive collagen deposition observed in aortic valve stenosis. Further investigation is needed to clarify the role of transforming growth factor beta-1/proliferator-activated receptor gamma nuclear receptor/matrix metalloproteinase-9 in aortic valve stenosis.


Diapath Lab Talks | Privacy Policy